HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    人工智能模型如何建立(人工智能模型如何建立的)

    发布时间:2023-03-14 04:45:01     稿源: 创意岭    阅读: 131        问大家

    大家好!今天让创意岭的小编来大家介绍下关于人工智能模型如何建立的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    ChatGPT国内免费在线使用,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    人工智能模型如何建立(人工智能模型如何建立的)

    一、AI生成模型:超越数据观测与计算机模拟的第三条科学探索之路?

    导语

    最先进的人工智能算法已经开始在探测星系的演化、计算量子力学波函数、 探索 新的化合物等领域施展拳脚。那么,还有没有那种无法自动化而只能由科学家完成的工作?

    如今的物理学和天文学实验会产生海量的数据,已经没有人或团队能够跟进所有的这些数据了。其中一些数据每天以TB级的规模增加,而且这个趋势不会减弱。在二十一世纪 20 年代中期射电望远镜 Square Kilometer Arra 将投入使用,它每年产生的数据量和整个互联网的数据量一样多。

    面对数据洪流,许多科学家开始求助于人工智能。只需要少量的人工输入,人工智能系统(如神经网络)就能够在数据海洋中漫游,识别异常,挖掘出人类尚未发现的模式。

    当然,利用计算机来辅助科学研究的 历史 可以追溯到约 75 年前,然而人类几千年前就在手工调查研究数据来寻找其中的有意义的模式。但是,近期一些科学家认为以机器学习、人工智能为代表的新技术能以一种全新的模式去进行科研工作。其中一种被称为生成模型的方法,能从对观测数据的诸多解释中找到最可信的理论,更为重要的是,该方法在研究中无需预先编入对于系统可能起作用的物理过程。其拥护者认为,生成模型的创新程度足可以被视为理解宇宙的潜在的“第三种方法”。

    在传统上,我们是通过 观测 来了解自然的。回想一下,开普勒就是通过研究第谷的行星位置表,辨识潜在的行星运行模式,才得以推断出行星是沿椭圆轨道运行的。同样的,科学可通过 模拟 来获得进步。一位天文学家可能会模拟银河系及其邻近的仙女座星系的运动,并预测它们将在几十亿年后碰撞。观测和模拟都有助于科学家生成假设,然后用进一步的观测来检验假设,而生成模型不同于这两种方法。

    瑞士联邦理工学院的天文物理学家 Kevin Schawinski 也是一位生成模型的积极支持者。他认为:“ 生成模型是介于观测和模拟之间的第三种方法, 这是解决问题的另一种方式。”

    Kevin Schawinski 是一名天体物理学家,他经营着一家名为 Modulos 的人工智能公司,他认为一种名为生成模型的技术提供了第三种了解宇宙的方式。

    一些科学家仅仅把生成模型及其它新技术当作传统科研中的工具,但是大多数研究者都认为 AI 的影响力巨大,并且在科学研究领域会发挥越来越大的作用。费米国家加速器实验室的天体物理学家 Brian Nord 使用人工神经网络来研究宇宙。他担心没有什么是不能通过自动化完成的事情,“这个推测倒是有点令人恐慌。”

    来自“生成”的 探索

    从研究生毕业时起,Schawinski 就因用数据驱动科学研究而闻名。在攻读博士学位期间,他面对的任务是,根据星系的外观数据对数千个星系进行分类。因为没有什么现成的软件能帮助他完成这项工作,他决定用众包的方式完成这项工作——于是,银河动物园(Galaxy Zoo)公民科学项目诞生了。

    从 2007 年开始,普通的电脑用户只要记录下他们推测的星系最佳归类,就能帮助到天文学家。通过多数票胜出来判定,通常能带来正确的分类结果。

    这是一个成功的项目,但 Schawinski 也注意到, AI 让这个模式过时了——今天,一个具有机器学习和云计算背景的天才科学家只需要花费一个下午就能完成这个工作。

    在 2016 年,Schawinski 把目光投向了生成模型,这个强大的新工具。本质上来说,生成模型是在求解,当给定条件 X 和观测结果 Y 时,概率 P(X,Y) 有多大。这个方法已经被证明是非常有效的。

    生成模型中最为著名的就是生成对抗网络(GAN)。经过充分的训练后,GAN 模型能够修复损坏和像素缺失的图像,也能让模糊的图像变得清晰。该模型通过竞争(对抗)来学习推断缺失的信息,这个神经网络的一部分被称作生成模型(generator):生成虚拟的数据;另一部分被称为判别模型(discriminator):把生成出来的虚假数据和真是数据分割开来。两个部分交替训练,逐步优化(类似于博弈)。

    或许,你已经看过最近流传甚广的GAN生成的假面孔。正如那个标题所言“这些人并不存在却又真实得吓人”。

    上面看到的脸孔都不是真实的,上面的 A 列,和左侧的 B 列都是由生成对抗网络(GAN)使用真实的面部元素构建的。然后,GAN 将 A 中的面部的基本特征(性别,年龄和脸形)与 B 中的面部的精细特征(头发颜色、眼睛颜色)相结合,构建出了上图表格中的所有人脸图像。

    潜在空间

    概括地说,生成模型获得数据(大多数是图像),并把他们分解成抽象的基本要素——科学家将其称为数据的“潜在空间”。算法能控制潜在空间中的元素,以此来探究这些元素如何影响原始的数据。这个方法有助于揭示该系统运作的物理过程。

    潜在空间是一个抽象的难以想象的概念。不过我们可以做一个类比:当你在试图确定一个人脸的性别时,你的大脑可能在做什么呢?也许会注意到人的发型、鼻子的形状,甚至在运用一些你无法用言语描述的判断模式。同样的,计算机程序也在数据中寻找显著的特征。即便计算机并非不知道什么是性别,什么是小胡子,但如果我们提供给机器学习系统的数据集标注了“男性”和“女性”,并且一部分人还有一个标签叫“小胡子”,计算机能快速地推断出其中的关联性。

    生成模型与星系演化

    12月发表在《天文学与天体物理学》(Astronomy & Astrophysics)上的一篇论文中,Schawinski 与他在苏黎世联邦理工学院的同事 Dennis Turp 和 Ce Zhang 使用生成模型来研究星系在演化过程中所经历的物理变化。

    因为他们使用的软件与 GAN 相似,但其在对潜在空间处理的技术与 GAN 有所差异,所以从技术角度来说这不是 GAN。他们的模型创建了人工数据集,去测试假设的物理过程。比如说,他们想知道恒星形成的“淬熄”(形成速率快速下降)与星系环境密度的增加之间的关系。

    对 Schawinski 来说,关键问题是仅从数据中能挖掘出多少和恒星与星系演变相关的信息。“让我们忘却所有的关于天体物理学的知识。仅依靠数据本身,我们能在多大程度上重新发现这些知识?”

    首先,星系的图片被压缩至他们的潜在空间,然后 Schawinski 在这个空间中调整元素,使其能对应上星系的特定环境变化,比如周围物质的密度。这样就有了一个假设生成器。通过重构这个星系,让大量原本处于低密度环境中的星系处于高密度环境中以此来看看带来了什么不同。

    这三位研究者注意到随着星系从低密度环境走向高密度环境,它们的颜色会变得更红,恒星也变得更加集中。Schawinski 指出这一点与现有的星系观测相吻合,问题是,为什么会这样?

    Schawinski 说,后续的工作还没有实现自动化,“人类必须参与其中,那么,什么样的物理原理可以解释这种效应?”对于这个过程,可能有两种解释,一是在高密度环境中,星系更红是因为其中包含了更多的尘埃;或者是因为恒星的形成减少了(换句话说,恒星更老了)。

    现在有了生成模型,这两种思路都能接受检验。改变与与尘埃和恒星形成率相关的潜在空间元素,就能观测这种改变对星系颜色的影响。Schawinski 说:“答案很显然,星系更红是因为恒星形成率在下降,而不是因为尘埃。因此,我们应该采纳这个解释。”

    利用生成模型,天体物理学家可以研究星系如何从低密度环境走向高密度环境,以及这些变化背后的物理原理。

    生成模型相较于传统方式的优势

    这种方法与传统的模拟方法相近,但与之有关键的差别。Schawinski 表示:“模拟本质上是由假设驱动的。也就是说,我们自认为已经洞悉了观测现象背后的物理法则。所以,我们把恒星形成规律、暗物质行为的原理等等这些我们自认为正确的假设放在一起,模拟运行。但是,模拟环境真的与实际情况吻合吗?”。他用生成模型所做的事情与模拟完全相反,“我们不知道任何事情,不做任何假设,我们希望数据本身能告诉我们可能会发生什么。”

    生成模型在这项研究中取得的成功并不意味着天文学家和研究者就是多余的。但这似乎提醒研究者们——仅仅掌握了大量数据的人工智能系统就能够完成对天体物理学的学习。Schawinski 说:“这不是完全自动化的科学,但这意味着我们至少有能力去构建部分工具,使科学过程自动化。”

    虽然生成模型非常强大,但这是否真的代表了一种新的科学研究方法还有待商榷。

    对于纽约大学和 Flatiron 研究所的宇宙学家 David Hogg 来说,这项技术令人印象深刻,但充其量也只是一种从数据中提取模式特征的复杂方法——这是天文学家几个世纪以来都在做得事情。换而言之,这是观测、分析的高级形式。

    和 Schawinski 相同,Hogg 的工作也充分应用人工智能;他一直在利用神经网络来对恒星进行基于光谱特征的分类,并使用数据启动的模型来推断恒星的其他物理属性。但是他认为他的工作和 Schawinski 的一样,都是经过检验的科学。Hogg 表示:“我不认为这是第三种方法。只是我们这个社群在对数据处理的方法上更加复杂而已。特别的是,我们越来越善于将数据与数据进行比较。但是依我看来,我的工作仍然是在做观测。”

    人工智能:

    勤奋而“难以捉摸”的科研助手

    无论在概念上是否有创新性,人工智能和神经网络已经显然在当代天文学和物理学研究中发挥了关键作用。在海德堡理论研究所工作的物理学家 Kai Polsterer 领导着一个天体信息学小组,这个小组主要关注以数据为中心的天体物理学研究新方法。从星系数据集中提取红移信息曾经是一项艰巨的任务,而现在他们小组使用机器学习算法就能解决这个问题。

    Polsterer 认为这些基于基于人工智能的新系统是“勤奋的助手”,可以连续处理数据数个小时而不抱怨单调无聊,不抱怨工作条件。这些系统可以完成所有枯燥乏味的繁重工作,研究者就能脱身去做“又酷又有趣的科学工作”。

    Polsterer 警告说,这些系统并不是完美的,算法只能去做他们被训练过的事情,系统对输入的数据是“无感觉的”。给 AI 系统一张星系图片它可以估算其红移和年龄,但是你给同一个系统一张自拍照或者一张臭鱼烂虾的照片,它也会照方抓药估算出一个(错误的)年龄。Polsterer 认为,人类科学家的监督工作非常重要。工作还是要回到研究者身上,研究者才是要负责解释这些现象的人。

    就这一点而言,费米实验室的 Nord 警告道,神经网络不仅要给出结果,也要给出相关的误差线,如果在科学研究中,你做了一个测量但没有报告相关的误差估计,就没有人会认真对待这个结果。

    就像许多的人工智能研究员一样,Nord 也关注神经网络给出的结果的可解释性,通常来说,一个 AI 系统在给出结果时无法明确地表示出这个结果是如何获得的。

    然而,并不是每个人都觉得结果不透明是一个必须关注的问题,法国CEA Saclay理论物理研究所的研究员 Lenka Zdeborová 指出,人类的直觉同样难以捉摸,给你看一张猫的图片,你能立刻认出这是一只猫,但是你并不知道你是怎样做到这一点的,从这个角度上来说,人的大脑就是个黑盒。

    并不仅仅是天体物理学家和宇宙物理学家在向人工智能助力、数据驱动的科学研究发展。Perimeter 理论物理研究所和安大略滑铁卢大学的量子物理学家 Roger Melko 已经使用神经网络来解决该领域中的一些最棘手最重要的问题,例如多粒子系统的波函数的数学表示。

    因为波函数的数学形式可能会随着它所描述的系统中的粒子数量呈指数级增长,这被 Melko 称为是“指数维度诅咒”,在这样的工作中 AI 就是不可缺少的组成部分了。

    这个困难类似于在国际象棋和围棋中找到最好的走法:玩家会试图多看一步,想想对手会出什么招,然后再选择自己的最佳应对策略。但是随着思考步数的增加,复杂性也大为增加。

    当然, AI 已经攻克了这两个领域。 1997 年 5 月 11 日, 深蓝计算机在国际象棋领域战胜了人类;2017年4月10日 ,AlphaGo 战胜了柯洁,AI 在围棋领域战胜了人类。Melko 认为,量子物理学也面临同样的问题。

    机器的思想

    无论是 Schawinski 所声称的他找到的是科学研究的“第三方法”,还是如 Hogg 所说的这“仅仅是传统上的观测和数据分析”。我们可以明确的是, AI 正在改变科学 探索 的方式并且在加速科学发现,值得探讨的是,这场 AI 革命在科学领域能走多远?

    有时候,人们会对“人工智能科学家”的成就大肆褒奖。十年前,一个名叫亚当的 AI 机器人化学家研究了面包师傅的酵母的基因组,并找出了负责制造某种特定氨基酸的是哪些基因。(亚当观察缺少某些特定基因的酵母菌落,并与拥有这些基因的菌落的行为进行比较,由此找到差异完成研究。)

    当时Wired杂志的标题是:机器人独立完成科学发现。

    最近,格拉斯哥大学的化学家 Lee Cronin 在使用机器人去随机混合化学物质,由此来观测会形成什么样的化合物,并通过质谱仪、核磁共振机和红外分光计实时监控反应,这个系统最终能学会预测哪些组合的化学反应最为剧烈。Cronin 表示即使这个系统不能带来新的发现,机器人系统也能让化学家的研究效率提高 90%。

    去年,苏黎世联邦理工学院的另一组科学家们在训练神经网络从数据中推导物理定律。他们的系统类似于“机器人开普勒”,利用从地球上观测到的太阳和火星的位置信息,重新发现了日心说;并且通过观测小球碰撞模型发现了动能守恒。因为物理定律通常会有多种表述形式,科学家们想知道这个系统能否提供种更简洁的方法来思考已知的物理定律。

    这些都是 AI 启动、助力科学 探索 的例子。尽管在每一个例子中,这些新方法的革命性都会收到争议。但在这个信息浩如烟海且高速增长的时代,最值得商榷的问题可能是:仅从数据中,我们能获得多少信息?

    在 《The Book of Why: The New Science of Cause and Effect》一书中,计算机科学家 Judea Pearl 和科学作家 Dana Mackenzie 断言到:数据“愚蠢至极”。他们写到: 关于因果性的问题“永远不能仅凭数据去寻找答案”。

    “每当你看到以无模型的方式分析数据的论文或研究时,你可以肯定的是这项研究成果仅仅是总结,或许做了转述,但绝对不是在解释数据。”Schawinski 对 Pearl 的观点抱有同感,“只使用数据”这个想法有点类似于“稻草人”。他也从未生成以这样的方式做因果推断。他想说的是:“和我们通常的工作相比,我们可以用数据多做点事。”

    另一个经常听到的观点是: 科学需要创造力。

    可是到目前为止,我们还不知道,如何将创造力编入计算机。(Cronin 的机器人化学家只是在简单地尝试科研工作,似乎不能算是特别有创造力)Polsterer 认为:“创建一套理论,有理有据的理论,我认为需要创造力,而创造力离不开人类。”

    然而,创造力来自何方呢?Polsterer 怀疑这和 不喜欢无聊 有关,这恐怕是机器所没有的体验。“要拥有创造力,你必须厌恶无聊,然而我认为电脑就永远不会感受到无聊。”然而,“创造力”、“灵感”却常常用来描述深蓝、AlphaGo 这样的 AI 程序。我们在描述机器的思想时的困难映射出我们在描述自己思维过程时的困难。

    Schawinski 最近离开了学术界,去了私人企业。他现在经营着一家名为 Modulos 的初创公司,该公司雇佣了许多联邦理工学院的科学家。根据该公司的网站介绍,该公司位于“人工智能和机器学习这股风潮的风眼中”。无论当前人工智能技术和成熟的人工智能之间存在多大的差距,他和其他专家都认为机器已经准备好了去完成更多的科学家的工作。不过,AI 的局限性还有待考证。

    Schawinski 畅想道:“在可以预见的未来,有没有可能去制造出一台能过发现物理定律、数学原理的机器,甚至超越当今最聪明的人类的能力极限?科学的未来终将被人力所不能及的机器所掌握么?这是一个好问题,但我不知道答案。”

    推荐阅读

    Nature机器智能:破解因果推断难题

    物理学家要失业?机器学习能自学量子力学!

    做科研做到绝望是一种什么样的体验?

    科研投入越来越多,重大成果的产出却越来越少?

    要不要加入我们?一起影响世界!

    集智俱乐部QQ群|877391004

    商务合作及投稿转载|swarma@swarma.org

    搜索公众号:集智俱乐部

    加入“没有围墙的研究所”

    让苹果砸得更猛烈些吧!

    二、如何组建人工智能团队:11个关键角色

    音乐家、化学家、物理学家能为企业的人工智能团队带来什么启发?将有很多。人们需要了解人工智能的一系列技能和角色,其中包括非技术性的技能和角色,它们将推动人工智能的成功应用。

    人工智能计划的成功可能取决于艺术和哲学,也取决于数据科学和机器学习。这是因为企业有效部署人工智能需要建立一个全面的团队,其中包括来自各种背景和技能集的人员,以及非技术角色。

    Ness数字工程公司首席技术官MosheKranc说,“任何人工智能计划都需要IT专家和行业领域专家的结合。IT专家了解机器学习工具包:哪些算法系列最有可能解决特定问题?如何调整特定的算法以提高结果的准确性?而行业领域专家带来特定领域的知识:哪些数据源可用?数据有多脏?机器学习算法的建议质量如何?如果没有行业领域专家的输入,IT专家可能无法回答这些问题。”

    因此得出的结论是:人工智能的成功确实依赖于团队,而不是任何个人或角色。

    SAS公司执行副总裁兼首席信息官Keith Collins说,“当建立一支有效的人工智能团队时,我们需要寻求行业专家或超级团队,而团队合作才会赢得胜利。多元化的学科是人工智能成功的关键。”

    人工智能人才的四大核心类型

    Collins认为人工智能团队需要四个核心类型的人员:

    •了解业务流程对于建立真实场景和有价值的结果至关重要的人员。

    •了解机器学习、统计、预测和优化等分析技术并且正确使用的人员。

    •了解数据来自哪里,质量如何,如何维护安全和信任的人员。

    •了解如何通过结果来实施分析的人工智能架构师。

    Collins指出,与其他IT领导者和人工智能专家一样,这些核心学科或角色可以从各种背景中汲取灵感。他以音乐、化学、物理等学科为例。

    他说:“这些学科鼓励人们从复杂的交互系统中理解科学的过程和思维。他们通常擅长建立良好实验所需的批判性思维技能和应用机器学习的成果。”

    多元化人工智能团队的价值

    多元化团队的价值范围广泛:例如,它可以帮助企业更好地应对人工智能偏见。解决业务问题(包括最大和最棘手的问题)也很重要,这可能是企业首先制定人工智能战略的原因之一。

    Very公司高级数据科学家和物联网实践主管Jeff McGehee说,“人们普遍认为,多样化的意见对于解决所有复杂的问题至关重要。多样性与生活体验有关,专业背景是大多数人生活体验的重要组成部分,它可以为人工智能项目增加维度,并为寻找创新解决方案提供新的视角。”

    McGehee还指出,建立人工智能或其他不同的团队需要企业的积极努力,并作为招聘和雇佣实践的一部分。企业会发现实现多样性可能不是一个可行的团队建设策略。

    考虑到这一点,需要了解对于人工智能团队具有价值的一系列专家和角色,其中包括非技术角色。

    1.领域专家

    人们可以将这些角色和人员视为主题专家。无论使用哪个术语,都需要了解他们对企业的人工智能计划的重要性。

    McGehee说,“开发人工智能系统需要深入了解系统运行的领域。开发人工智能系统的专家很少会成为系统实际领域的专家。行业领域专家可以提供关键见解,使人工智能系统发挥最佳性能。”

    Ness公司Kranc指出,这些专家可以解决其所在领域针对企业和战略的问题。

    他表示,行业领域专家类型取决于要解决的问题。无论所需的洞察力是在创收和运营效率还是在供应链管理方面,行业领域专家都需要回答这些问题:

    •哪些见解最有价值?

    •收集的有关行业领域的数据是否可以作为见解的基础?

    •得出的见解是否具有意义?

    以下将介绍一些特定的行业领域示例,但首先了解一下人工智能团队中的其他一些关键角色。

    2.数据科学家

    Jane.ai公司人工智能研发主管Dave Costenaro表示,这是人工智能团队在新建项目上工作的三个关键需求中的第一个。其示例项目包括聊天代理、计算机视觉系统或预测引擎。

    Costenaro说,“数据科学家有着各种背景,如统计学、工程学、计算机科学、心理学、哲学、音乐等,通常都具有强烈的好奇心,这迫使他们深入系统中寻找和使用模式,例如他们可以为人工智能项目提供什么,确定它能做什么,并训练它做到这一点。”

    3.数据工程师

    Costenaro说,“程序员从数据科学家那里获得想法、模型、算法,并通过规范化代码、使其在服务器上运行以及成功地与适当的用户、设备、API等进行对话,并将它们变为现实。”

    4.产品设计师

    Costenaro表示,三项关键需求的最终结果也说明了人工智能团队的非技术专业知识的价值。

    他说:“产品设计师也来自各种背景,例如艺术、设计、工程、管理、心理学、哲学。他们为所需和有用的东西制定了路线图。”

    5. 人工智能伦理学家和 社会 学家

    人工智能伦理学家和 社会 学家可能在某些部门(特别是医疗保健或政府部门)中发挥着至关重要的作用,但在广泛的使用案例中似乎可能会变得越来越重要。

    McGehee说,“人工智能系统的一个重要组成部分是了解它如何影响人们,以及代表性不足的群体是否受到公平对待。如果一个系统具有前所未有的准确性,但没有产生预期的 社会 影响,它注定会失败。”

    6.律师

    McGehee表示,在这个新兴领域也看到了对法律专业知识的单独而相关的需求。McGehee说,“GDPR法规为制定围绕算法决策的法规树立了先例。随着世界各国对人工智能在工业中的应用越来越了解,预计将出台更多的法律。精通这一领域的律师可能是一种宝贵的财富。”

    由于行业领域专家如此重要,正如Kranc和McGehee所阐述的那样,有必要研究一些行业领域的具体例子,其中包括技术和非技术领域。这些领域应该是人工智能团队建设的一部分,具体取决于企业的特定目标和用例。

    Jane.ai公司的Costenaro指出,“由于人工智能通常只是增强现有商业用例的一个使能层,因此过去支持过这个用例的团队成员仍然是具有价值的,出于同样的原因也是必不可少的。”

    Costenaro提供了五个可能具有价值的人工智能贡献者的角色示例,并解释了如何在人工智能环境中调整和增强现有角色。

    7. 高管和策略师

    Costenaro说,“企业高管领导层将需要考虑哪些业务模式可以通过人工智能实现自动化和改进,并权衡来自以下团队的新机会和风险,如数据隐私、人机交互等。”

    8. IT主管

    不要对非技术角色的价值感到困惑:如果没有IT,企业的人工智能战略就不会走得太远。 Costenaro指出,IT团队需要解决以下问题:“如果正在为模型培训积累和存储大量数据,那么将如何确保数据的隐私性和安全性?此外,将如何存储并从服务器到客户的设备快速可靠地提供服务?”

    Costenaro补充道,这也将推动对DevOps专业人士和拥有云原生技术(如容器和编排)专业知识人员需求的不断增长。而IT部门有机会使用诸如聊天机器人之类的人工智能工具来简化内部服务。

    9.人力资源领导者

    Costenaro说,“与此类似,人力资源部也有很多机会通过使用像聊天机器人这样的人工智能工具来为客户提供服务,从而提高效率。”

    此外,人力资源似乎很可能成为评估组织内人工智能影响的一个重要参与者,这与McGehee将伦理学家和律师等角色包括在内并没有不同。

    10.营销和销售领导者

    正如Kranc指出的那样,如果企业的人工智能计划与创收相关,那么应该考虑从销售和营销等领域添加领域专业知识。

    Costenaro还指出,作为人工智能项目的一部分,销售和营销专业人员可能需要利用销售自动化工具和机器人流程自动化(RPA)等技术来增强他们现有的技能和流程。

    11.运营专家

    在整个IT部门内,运营和DevOps专业人员都有特定的领域专业知识来实施人工智能计划。Costenaro列举了以下问题作为需要在哪里运用专业知识的例子:

    •哪些可以实现自动化和改进?

    •如果使用机器学习模型,将如何创建新的数据收集流程以持续培训和改进这些模型?

    •可以从开源存储库中获取现成的、预先训练好的模型和/或数据集,从而获得巨大的先机吗?第三方供应商提供的API服务是否会考虑一些任务和用例?

    虽然人工智能可以解决一些重大问题,但也一定会产生新的挑战。这就是构成多元化团队的根本原因。

    McGehee说。“具有不同背景和个性的人员关注不同的项目细节和限制因素,这很有用,因为它提高了所有重要细节的可能性,并提供了确定解决方案的整体方法。”

    三、教人工智能以“我”的视角看世界

    来源: 科技 日报

    教人工智能以“我”的视角看世界

    世界是多维的,生活中同样的景物在不同的视角下会呈现出不同的形态。若要让人工智能更像人类,就要让其视角更接近人。从人类的角度观察环境,人工智能或许会看到一个新的天地。

    近日,由脸谱(Facebook)和9个国家的13所大学及实验室组成的学术联盟宣布,11月将开源让人工智能拥有以第一人称视角与世界进行交互能力的Ego4D(Egocentric 4D Perception)项目。这个项目包含超过3025小时的第一人称视频,涉及来自73个城市的700多名参与者的日常生活。这些视频将有助于使人工智能认知世界的方式更加趋向于人类。

    那么,目前人工智能主要通过哪种视角认知世界,不同视角对于人工智能认知环境会产生哪些影响?人工智能感知环境、认识世界主要通过哪些技术?想要认知世界的方式更像人类,人工智能还需突破哪些瓶颈?

    人工智能通常采用第三人称视角

    “要令人工智能系统如同人类一样与世界交互,人工智能领域需要发展出一种全新的第一人称感知范式。这意味着人工智能在实时运动、交互时,要以第一人称视角理解日常活动。”脸谱首席研究科学家克里斯汀·格劳曼曾言。

    如何理解人工智能的第一人称和第三人称视角?谭茗洲解释道:“第一人称视角代入感很强,比如在玩 游戏 时,你如身临其境,看到的 游戏 画面就是你真实世界看到的画面。第三人称视角又叫作上帝视角,仿佛你一直飘在角色身边一样,如影随形,可以看到角色本身及周围的情况。例如,第三人称视角下藏在掩体后可以看到掩体前面的情况;而在第一人称视角下,囿于视角范围,在掩体后则只能看到掩体本身。”

    “再如自动驾驶,其视觉系统如果只从旁观者的(如车的角度)收集数据,即便通过数十万个基于旁观视角看到的车辆行进图像或视频进行训练,人工智能可能依然不知道如何去做,很难达到现在的自动驾驶水平。因为这种旁观者的视角与坐在车内方向盘前的视角很不一样,第一人称视角下,真人驾驶员做出的反应还包括点刹、猛刹等行为,这些数据是从旁观者视角无法搜集的。”谭茗洲进一步说。

    “以前人工智能界很少以第一人称视角收集数据集,这个项目弥补了人工智能视角体系的短板。未来AR、VR的发展十分重要,如果人工智能可以从‘我’出发,以第一人称视角来观察理解世界,将开启人类和人工智能沉浸式体验的新时代。”谭茗洲指出。

    克里斯汀·格劳曼也表示:“下一代人工智能系统需要从一种完全不同的数据中学习,即从事件中心视觉而不是边线视觉展示世界的视频中学习。”

    建立真实世界数据集

    目前让人工智能感知环境、认识世界,建立类人化的认知体系主要通过什么“抓手”展开?

    业内专家指出, 历史 证明,基准和数据集是人工智能行业创新的关键催化剂。今天,几乎可以识别图像中任何对象的计算机视觉系统都是建立在数据集和基准之上的,数据集和基准为研究人员提供了一个研究真实世界图像的实验台。

    “脸谱日前发布的这个项目,其实本身就是建立一个数据集,旨在训练人工智能模型更像人类。其开发了5个围绕第一人称视觉体验的基准挑战,即把第一人称视角拆解成5个目标,开展相应的训练集竞赛。”谭茗洲指出。

    Ego4D的5个基准是:情景记忆,什么时候发生?预测,我接下来可能会做什么?手—物交互,我在做什么?视听日记,谁在什么时候说了什么?社交互动,谁在和谁互动?

    谭茗洲强调,上述基准测试将促进开发人工智能助手所必需的构建模块的研究。人工智能助手不仅可以理解现实世界中的指令并与之交互,同时可以在元宇宙中实现对元宇宙中指令的理解和交互。

    为了建立这个数据集,与脸谱合作的大学团队向研究参与者分发了现成的头戴式摄像头和其他可穿戴传感器,以便捕获第一人称的、未经编辑的日常生活视频。项目的重点是参与者从日常场景中捕获视频,比如购物、烹饪、边玩 游戏 边聊天,以及与家人和朋友进行其他团体活动等。

    视频采集了摄像头佩戴者在特定环境中选择注视的对象,以及摄像头佩戴者如何从自我中心角度与人和物互动。到目前为止,摄像头佩戴者已经执行了数百项活动,并与数百种不同的对象进行交互,项目的所有数据都是公开的。

    “脸谱这项研究能够更快地推动人工智能领域自我中心认知研究的进步。这将对我们未来的生活、工作和 娱乐 方式产生积极影响。”谭茗洲表示。

    让人工智能认知能力更像人

    人工智能发展的终极目标是让人类受益,让我们能够应对现实世界中日益复杂的挑战。想象一下,通过AR设备能够在琴、棋、书、画课堂中准确显示如何弹琴、下棋、握笔和勾勒;形象生动地指导家庭主妇根据食谱烘焙烧烤、烹饪菜肴;健忘的老人借以眼前全息图的帮助回忆过去……

    脸谱强调,希望通过Ego4D项目为学术界和行业专家开辟一条全新的道路,帮助构建更智能、更灵活和更具交互性的计算机视觉系统。随着人工智能越加深入理解人类的日常生活方式,相信将这个项目能以前所未有的方式对人工智能的体验进行情境化和个性化。然而,目前的研究还只是触及自我中心认知的皮毛。

    “第二,还需要以事件和行为的关联为研究中心,定义人工智能的行为。一件事情的发生包括多个行为,要用人类反馈的方式训练人工智能系统,使人工智能的行为与我们的意图一致。”谭茗洲进一步表示。

    谭茗洲强调:“此外,听觉和视觉、语言和行为等之间还需要配合、响应、联动,这就要构建多模态交互模型,纵深研究视角为何会聚焦投向并与意图识别相结合,形成与行为之间联动的机制等。”

    四、学习人工智能,需要什么数学基础?

    需要必备的知识有:

    1、线性代数:如何将研究对象形式化?

    2、概率论:如何描述统计规律?

    3、数理统计:如何以小见大?

    4、最优化理论: 如何找到最优解?

    5、信息论:如何定量度量不确定性?

    6、形式逻辑:如何实现抽象推理?

    7、线性代数:如何将研究对象形式化?

    人工智能简介:

    1、人工智能(Artificial Intelligence),英文缩写为AI。

    2、它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能涉及的学科:

    哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。

    人工智能模型如何建立(人工智能模型如何建立的)

    以上就是关于人工智能模型如何建立相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    学人工智能好就业吗

    最近很火的人工智能聊天(最近很火的人工智能聊天平台)

    人工智能设计师月薪(人工智能设计师月薪一般多少)

    优秀的文案策划范文(文案策划没有经验可以做吗)

    网站模板之家免费下载(网站模板之家免费下载)