HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    构建大数据平台功能架构(构建大数据平台功能架构包括)

    发布时间:2023-03-16 19:00:27     稿源: 创意岭    阅读: 1488        问大家

    大家好!今天让创意岭的小编来大家介绍下关于构建大数据平台功能架构的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    构建大数据平台功能架构(构建大数据平台功能架构包括)

    一、如何正确建立大数据结构?

    大数据各行各业的企业都提供了潜力。正确使用这些大数据信息可能将增加商业价值,帮助您的企业从市场竞争中脱颖而出。如下是几个企业成功应用大数据的案例: 大数据的例子 汽车制造商已经开始使用大数据来了解汽车何时需要返回到车库进行维修。使用汽车发动机的数百个传感器,可以为汽车制造商发送实时的数据信息,这使得制造商甚至比驾驶汽车的司机还要提前知道汽车何时会出现故障。卡车制造商开始使用大数据,基于实时交通条件和客户的需求来改进他们的路由,从而节约燃料和时间。 零售业也开始越来越多的使用大数据,鉴于越来越多的产品均有一个RFID标签能帮助零售商跟踪产品,知道很少某种产品库存缺货,并及时向供货商订购新产品。沃尔玛便是这正确利用大数据这方面的一个很好的例子。当零售商开始识别他们的客户时,就能够更好地建立商店,更好的满足客户的需求。 当然,上述这些只是几个浅显的例子,大数据的可能性几乎是无止境的。不久的将来,我们将讨论在大数据平台上的最佳实践。知道大数据能够提供商业价值是一回事;而企业要知道如何创建正确的架构则又是另一回事了。 大数据结构 大数据有三个特征,使得大数据不同于现有的数据仓库和商业智能。大数据的这三大特点是: 数据量庞大:大数据的数据量相当庞大,更多的时候大数据的数据量可以达到比数TB到PB级字节。 高速度传递:所有这些TB和PB字节的数据能够实时交付,数据仓库每天都需要应付如此高速的数据流。

    二、如何架构大数据系统 hadoop

    Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。

    1. 大数据分析大分类

    Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。

    按照数据分析的实时性,分为实时数据分析和离线数据分析两种。

    实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。

    对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。

    按照大数据的数据量,分为内存级别、BI级别、海量级别三种。

    这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

    图1 用于实时分析的MongoDB架构

    MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。

    此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。

    BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。

    海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapReduce进行分析。本文稍后将主要介绍Hadoop上基于MapReduce的一个多维数据分析平台。

    数据分析的算法复杂度

    根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。

    还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。

    而大多数统计分析,机器学习问题可以用MapReduce算法改写。MapReduce目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。

    2. 面对大数据OLAP大一些问题

    OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

    Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。

    然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapReduce的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。

    而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。

    使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapReduce强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显著增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显著影响分析的性能。

     

    而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。

    3. 一种Hadoop多维分析平台的架构

    整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。

    数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

    数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

    维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。

    并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Reduce,提交给Hadoop集群之后,生成报表供报表中心展示。

    核心模块是将多维分析语言转化为MapReduce的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapReduce程序。核心模块的具体逻辑如图6所示。

    图6中根据JobConf参数进行Map和Reduce类的拼装并不复杂,难点是很多实际问题很难通过一个MapReduce Job解决,必须通过多个MapReduce Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapReduce工作流的例子。

    MapReduce的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

    三、大数据技术架构都有哪些变化?

    1.从本地数据平台到基于云的数据平台

    云可能是一种全新的数据架构方法的具颠覆性的推动力,因为它为公司提供了一种快速扩展人工智能工具和功能以获取竞争优势的方法。

    2.从批处理到实时数据处理

    实时数据通信和流媒体功能的成本已大大降低,这为其主流使用铺平了道路。这些技术实现了一系列新的业务应用:例如,运输公司可以在出租车到达时向客户提供精确到秒的抵达时间预测;保险公司可以分析来自智能设备的实时行为数据,从而将费率客制化;而且制造商可以根据实时的传感器数据来预测基础设施方面的各种问题。

    3.从预集成的商业解决方案到模块化的同类佳平台

    为了扩展应用程序的规模,公司往往需要冲破大型解决方案供应商所提供的遗留数据生态系统的限制。现在,许多公司正朝着高度模块化的数据架构发展,这种架构使用了佳的,经常使用的开源组件,这些组件可以根据需要被新技术替换而不会影响数据架构的其他部分。

    4.从点对点到脱离数据访问

    人们可以通过API来揭露数据,这样可以确保直接查看和修改数据的做法是受限且安全的,同时还可以让人们更快地访问常见的数据集。这使得数据可以在团队之间轻松得到重用(reused),从而加速访问并实现分析团队之间的无缝协作,从而可以更高效地开发各种人工智能用例。

    关于大数据技术架构都有哪些变化,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

    四、如何打造高性能大数据分析平台

    1.大数据是什么?

    大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。

    据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。

    这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。

    据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。

    高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。

    根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。

    准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。

    大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。

    与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。

    2.大数据系统应包含的功能模块

    大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。

    下图描述了大数据系统的这些高层次的组件:

    2.1各种各样的数据源

    当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。

    显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。

    由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。

    2.2数据采集

    第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。

    在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。

    2.3存储数据

    第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。

    在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。

    2.4数据处理和分析

    第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。

    在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。

    2.5数据的可视化和数据展示

    最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。

    3.数据采集中的性能技巧

    数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。

    数据采集过程基于对该系统的个性化需求,但一些常用执行的步骤是 – 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。

    涉及数据采集过程的逻辑步骤示如下图所示:

    下面是一些性能方面的技巧:

    ●来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。

    ●如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。

    ●如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。

    ●优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。

    ●类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。

    ●即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。

    ●尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。

    ●大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。

    ●如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。

    ●数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。

    ●来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。

    ●和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。

    ●数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。

    ●一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。

    ●多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。

    ●谨慎选择一个能够最大限度的满足需求的解决方案。

    4.数据存储中的性能技巧

    一旦所有的数据采集步骤完成后,数据将进入持久层。

    在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。

    ●首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。

    ●大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。

    ●不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。

    ●数据库分为行存储和列存储。

    ●具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。

    ●同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性。

    ●这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。

    ●压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。

    ●数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。

    ●并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。

    ●如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。

    ●NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。

    ●许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。

    ●如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。

    ●这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。

    ●大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。

    ●在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。

    5.数据处理分析中的性能技巧

    数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。

    本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。

    ●在细节评估和数据格式和模型后选择适当的数据处理框架。

    ●其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。

    ●同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。

    ●有些框架擅长高度并行计算,这样能够大大提高数据效率。

    ●基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。

    ●概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。

    ●一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业

    ●在数据分块是需要当心。

    ●该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。

    ●如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。

    ●不要忘了查看一个任务的作业总数。在必要时调整这个参数。

    ●最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。

    ●此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。

    ●大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。

    ●这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。

    ●数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。

    ●为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。

    ●更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。

    ●一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。

    ●实时监控系统的性能,这样能够帮助你预估作业的完成时间。

    6.数据可视化和展示中的性能技巧

    精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。

    需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。

    本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。

    ●确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。

    ●这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。

    ●重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。

    ●物化视图是可以提高性能的另一个重要的技术。

    ●大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。

    ●尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。

    ●可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。

    ●同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。

    ●保持像图形,图表等使用最小的尺寸。

    ●大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。

    7.数据安全以及对于性能的影响

    像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。

    – 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。

    – 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。

    – 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。

    – 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。

    – 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。

    – 同样,评估加密逻辑和算法,然后再选择。

    – 明智的做法是敏感信息始终进行限制。

    – 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。

    – 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。

    – 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。

    8.总结

    本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。

    本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。

    以上就是关于构建大数据平台功能架构相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    注册完域名后如何构建个人网站(注册完域名后如何构建个人网站呢)

    如何构建品牌(如何构建品牌个性)

    安徽构建品牌策划怎么样(安徽构建品牌策划怎么样做)

    草木景观设计联系电话(草木园林)

    北京品牌策划概况怎么写(北京品牌策划概况怎么写范文)