数理统计基础:
数据库原理以及相关知识:
熟练使用Excel、IBM SPSS Statistics等数据分析软件:
- 图 2:SPSS数据界面
通过用户友好型界面,分析并更好地了解您的数据,解决复杂的业务和研究问题。
借助高级统计程序,更快地了解大型复杂的数据集,帮助确保高精度和高质量的决策。
使用扩展、Python 和 R 编程语言代码,与开源软件集成。
通过灵活的部署选项,更轻松地选择和管理您的软件。
花1个月学习数据库知识。
花1-2个月学习基础的统计学知识。
花1个月学习点linux的知识。
花1~2个月去学习最基础的数据分析软件的操作。
数据分析师需要学哪些课程(数据分析师主要课程)
大家好!今天让创意岭的小编来大家介绍下关于数据分析师需要学哪些课程的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
官网:https://ai.de1919.com,如需咨询相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、数据分析师要学哪些内容
在大数据被广泛运用的今天,数据已经成为企业之间非常重要的竞争点之一。而作为与数据打交道最密切的职业——数据分析师,也将迎来了黄金就业期。据艾瑞研究统计,在过去的两年中,由于各行各业新聘用了80万名数据科学家,数据科学岗位的短缺问题已大大缓解;但是今天市场上仍然有成千上万的空缺职位,其中大部分在美国和中国。
图 1:数据分析概念图
一、常用分析技能:
数据分析和数据处理本身是一个非常大的领域,有不少分析方法和技巧。下面介绍几种比较常用的数据分析技巧。
在进行数据分析之前,掌握一定的数理统计的方法及原理是有必要的。比如了解数据的类型及各种数据类型的特点。在进行数据处理的过程中,不通的数据类型适用的方法也是不一样的。因为我们进行数据分析的目的,是需要借助对数据的分析得出一定的结论,因此,我们还需要了解一些数据统计特征背后的意义。比如,在使用IBM SPSS Statistics对数据进行相关分析时,我们需要了解分析结果中的显著性指标的含义。
在进行数据分析时,在绝大多数的情况下,需要处理的数据并不会是很少的。尤其是在大数据技术被广泛使用的今天,数据库的使用更是数据分析过程中不可缺少的一环。很多的数据分析人员做的工作都是从原始数据的整理,到各种拆分汇总,再经过分析,最后形成完整的分析报告。即使很多时候原始数据并不需要自己整理,但是具备数据库原理以及相关知识,并具有一定的代码能力的话,一定能为你的工作锦上添花。
在进行数据分析时,我们常常需要借助电脑软件进行辅助,毕竟,人脑的数据处理能力是远远不及计算机程序的。Excel是微软公司的办公软件Microsoft
Office的组件之一。作为最常见的办公软件之一,我们使用的Excel的功能只是其中的冰山一角。Excel除了制作普通的电子表格,还有很多高级的应用场景。例如,数据透视功能,可以将一组数据通过一个数据透视表演变出很多符合不同分析需求的表格,从而能够从多角度对数据进行分析。但是我们需要进行专业的统计分析时,就需要用到更加专业的软件加以辅助,例如IBM
SPSS Statistics。
二、常用分析软件
除了上述几种常用的分析技巧,一款好用且功能强大的分析软件也能让数据分析师事半功倍。虽然Excel常用且功能强大,但是当我们想要对大量数据进行统计分析时,Excel就会显得力不从心了。这时我们就需要使用到更加专业的统计软件——IBM
SPSS Statistics 。SPSS在数据分析领域的地位是不言而喻的。
利用 SPSS Statistics,您可以:
小结
掌握数据分析技巧以及熟练使用数据分析软件,是数据分析师的两大核心竞争力。想要成为一名优秀的数据分析师,可以先从掌握常用的数据分析方法以及SPSS软件开始。
二、数据分析师需要学习什么
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
如何学?
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。
数据分析入门容易提高难,题主目前处于初级阶段,可以通过自学观看视频,或者系统培训来提高自己,已工作来说,接受系统培训会更加快速,更推荐跟着课程系统性的学习,搭建好逻辑框架。
三、数据分析师要学什么?
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。
基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。
高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
扩展资料
工作职责:
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。
此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。
参考资料:百度百科-数据分析师
四、cda数据分析师考试科目有哪些啊?谢谢!!
1、CDALevelⅠ:CDALevelⅠ业务数据分析师需要掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。
2、CDALevelⅡ:在LevelⅠ的基础上更要求掌握多元统计、时间序列、数据挖掘等理论知识,掌握高级数据分析方法与数据挖掘算法,能够熟练运用SPSS、SAS、Matlab、R等至少一门专业分析软件。
熟悉适用SQL访问企业数据库,结合业务,能从海量数据提取相关信息,从不同维度进行建模分析,形成逻辑严密能够体现整体数据挖掘流程化的数据分析报告。
3、CDALevelⅡ:在LevelⅠ的基础上要求掌握JAVA语言和linux操作系统知识,能够掌握运用Hadoop、Spark、Storm等至少一门专业大数据分析软件,从海量数据中提取相关信息,并能够结合R、python等软件,形成严密的数据分析报告。
4、CDALevelⅢ:数据分析专家需要掌握CDALevelⅡ的所有理论及技术要求,还应了解计算机技术,软件开发技术,大数据分析架构及企业战略分析方法,能带领团队完成不同主题数据的有效整合与管理。对行业、业务、技术有敏锐的洞察力和判断力,为企业发展提供全方面数据支持。
扩展资料
报名条件
申报参加CDA数据分析员专业技术培训人员,具备统计学、计算机、金融、经济和会计学等专业大专以上学历。申报人员所出具的学历证明,必须是经国家教育部承认的正规国民教育学历证明。申报人员所出具的国家教育部承认的正规国民教育学历证明,必须真实有效,不得假冒伪造或修改。
报名方式
登陆CDA数据分析员网站,点击“在线报名”填写报名申请表并在线提交;或在下载资料中下载《数据分析员报名申请表》,填写学员信息后传真至报名处。
对报名申请表的信息进行初审后,工作人员通知学员递交电子版学历证明和身份证至报名处。学员缴纳学费之后领取教材以及相关资料。
参考资料来源:百度百科-CDA数据分析员
参考资料来源:百度百科-cda
以上就是关于数据分析师需要学哪些课程相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: