神经网络的三要素(神经网络的三要素是什么)
大家好!今天让创意岭的小编来大家介绍下关于神经网络的三要素的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、神经网络的基本原理是什么?
神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。
神经网络常见的工具:
以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。
以上内容参考:百度百科-神经网络
二、神经网络的历史是什么?
沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。
一、赫布型学习
二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。
弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。
在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。他们发现了神经网络的两个关键问题。
第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。
二、反向传播算法与复兴
后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。
在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。
神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。人们不清楚人工神经网络能多大程度地反映大脑的功能。
支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。
三、2006年之后的进展
人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。
如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。
例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。
他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。
2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。
2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。
构成
典型的人工神经网络具有以下三个部分:
1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。
这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
三、神经网络中的公共特征
神经网络中的公共特征,神经网络具有以下几个特征:以分布式方式存储信息;以并行协同方法处理信息;具有较强的自学习、自适应能力;具有较强的容错能力;具有较强的非线性映射能力。
四、实现人工智能的三要素
数据——人工智能的粮食
实现人工智能的首要因素是数据,数据是一切智慧物体的学习资源,没有了数据,任何智慧体都很难学习到知识。自从有记录以来,人类 社会 发展了数千年,在这期间,人类 社会 不断发展变化,从最早的原始 社会 到奴隶 社会 ,再到封建 社会 、资本主义 社会 、 社会 主义 社会 ,未来还会发展到共产主义 社会 ,在这漫长的发展过程中,都少不了数据做为人类 社会 发展的动力。
人类 社会 之所以发展的越来越高级文明,离不开学习知识,而知识的传播流传越快,则 社会 发展也越快,在封建 社会 以前,知识的传播从口口相传到甲骨文,再到竹简记录,就算是封建 社会 后期的纸质记录,其知识的传播速度也无法和今天的互联网知识的传播速度相提并论。
一般来说,知识的获取来自两种途径,一种是通过他人的经验而获得的知识,也就是他人将知识整理成册,然后供大家学习,这也是目前的主流学习方式;另一种就是通过自己的 探索 而获得的知识,这种学习方式目前只存在高精尖领域的知识学习,由于在已有的开放 社会 资源中,找不到可以学习的知识,只有自我 探索 获取。
无论哪种学习方式,都要通过学习载体来传播知识,无论是面对面讲述,实践操作,还是书本记录,或是电子刊物,亦或者影像资料等,这些都是学习载体,我们都可以称其为数据,学习数据的质量从根本上影响了学习的效果,所以对于人类学习而言,找一个好的老师,有一本好的书籍都是非常重要的学习选择。
既然人类的学习非常依赖于数据的质量,那么AI学习知识的时候,是否也会存在同样的问题呢?答案当然是肯定的,不仅如此,而且AI学习知识的时候对于数据的依赖还要高于人类。人类相比目前的AI而言,是具有推理能力的,在学习某些具有关联性知识的时候,通过推理联想可以获得更多的知识。从另一角度来讲,在某种特定场景下,即使数据不够完整全面,对于人类的学习影响也不会太大,因为人类会利用推理和想象来完成缺失的知识。而目前AI的推理能力还处于初级研究阶段,更多的难题还等着业内技术人员来攻克。
由此可见,目前AI学习知识大部分基本都是依赖于数据的质量的,在这种情况下,连人工智能专家吴恩达都发出人工智能=80%数据+20%算法模型的感慨,可见人工智能的“粮食安全”问题还是非常紧迫的,如果“粮食”出现了质量安全问题,那么最终将会导致人工智能“生病”。可见数据的好坏基本上大概率的决定了智能化的高低,有人会说,我可以通过提高算法模型来提高效果啊,不幸的是,在数据上稍微不注意造成了质量问题,需要在算法上历尽千辛万苦来提高效果,而且还不一定弥补得上,数据对于人工智能最终的发展结构可见一斑。
算力——人工智能的身体
算力是实现人工智能的另一个重要因素,算力在一定程度上体现了人工智能的速度和效率。一般来说算力越大,则实现更高级人工智能的可能性也更大。算力是依附于设备上的,所以一般谈论算力,都是在说具体的设备,比如CPU、GPU、DPU、TPU、NPU、BPU等,都是属于算力设备,只是他们有各自不同的能力而已。具体介绍可以阅读 《CPU、GPU、DPU、TPU、NPU...傻傻分不清楚?实力扫盲——安排!》 一文,介绍相当全面,从APU到ZPU,各种PU全部介绍完了,扫盲是够了。
算力设备除了上面的各种PU之外,每一种设备下面还会分不同的系列,比如英伟达的GPU在PC端有消费级的GeForce系列,专业制图的 Quadro 系列、专业计算的 Tesla系列 等,而GeForce系列细分还可以分为GT、GTX、RTX等,当然每种子系列下还可以继续细分,比如GTX下面有GTX1050、GTX1050Ti......GTX1080、GTX1080Ti,还有GTX Titan等更强大的系列,RTX下面也一样包括了更详细的等级划分,具体选择哪个系列要看具体使用场景而定,当然还和自身的消费实力相关,算力性能越强大也意味着更多的真金白银。
下面是RTX20系列的各种显卡的性能对比:
RTX30系列的各种显卡的对比:
此外,英伟达还有嵌入式端的各种显卡系列,比如适用于自主机器AI平台的JetSon系列、DRIVE AGX系列、Clara AGX系列等,以及云端的一些计算资源。同样每种系列还是做了进一步的细分,比如Jetson下面就根据其算力核心数就分成了Jetson Nano、Jetson TX2、Jetson Xavier NX、Jetson AGX Xavier等四款设备。
对于厂家而言,产品分的越细,越利于宣传和推广,对于消费者而言,可选择性也大大增加,但是也对消费者的基本知识也有了要求,如果不清楚各种产品的差异,那么就很容易选择错误,而现在的显卡市场就是如此,需要一些专业的知识才能够选对自己所需的显卡类型。希望大家经过科普后都能够选对自己的显卡型号,是打 游戏 、制图、还是计算,心里要有一个对应的系列型号才行,不然可要陷入选择困难症中了。
以目前人工智能主流技术深度学习为例,它的学习过程就是将需要学习的数据放在在算力设备上运行,经过神经网络亿万次的计算和调整,得到一个最优解的过程。如果把数据当成人工智能的“粮食”,那么算力就是撑起人工智能的“身体”,所有的吃进去的“粮食”都需要“身体”来消化,提取“营养”帮助成长。同样,人工智能的数据也是需要经过算力来逐一运算,从而提取数据的特征来作为智能化程度的标志的。
算法——人工智能的大脑
算法是人工智能程序与非人工智能程序的核心区别,可以这么理解,就算有了数据、有了算力,但是如果没有核心算力,也只能算是一个看起来比较高大上的资源库而已,由于没有算法的设计,相当于把一大堆的资源堆积了起来,而没有有效的应用。而算法就是使得这对资源有效利用的思想和灵魂。
算法和前两者比起来,算法更加的依赖于个人的思想,在同一家公司里,公司可以给每个算法工程师配备同样的数据资料和算力资源,但是无法要求每个算法工程师设计出来的算法程序的一致性。而算法程序的不一致性,也导致了最终智能化的程度千差万别。
相对于数据是依赖于大众的贡献,算力是依赖于机构组织的能力,而算法更加的依赖于个人,虽然很多公司是算法团队,但是真正提出核算算法思想的也就是那么一两个人,毫不夸张的说其他人都是帮助搬砖的,只是这种算法层面的搬砖相对纯软件工程的搬砖,技能要求要更高而已。这点和建筑设计一样,很多著名的建筑设计,其思想都是来自于一个人或者两个人,很少见到一个著名的设计其思想是由七八个人想出来的。
由于算法设计的独特性,和数据与算力相比,在人工智能的三个要素中,算法对人工智能的影响更大,这是因为在平时的工作当中,只要大家花上时间和费用,基本都可以找到好一些的数据和算力设备,但是算法由于其独特性,很多的算法是有专利或者没有向外界开源的,这个时候的差异就要在算法上体现出来了。
现在的大学和培训机构的人工智能专业,其学习方向也主要是以算法为主。因为数据是由大众产生,又由一些互联网大厂存储的,一般个人很少会去做这一块;而算力设备是由芯片公司控制着的;做为独立的个人最能够发挥效力的就在人工智能的算法方向了。培养优秀的算法人才对于人工智能的发展至关重要。目前市场上关于图像视觉、语音信号、自然语言、自动化等方向的算法工程师供不应求,薪资水平也是远超其他互联网软件行业的岗位。
后记:
当前,国内人工智能发展正处于高速成长期,未来将会进入爆发期,无论从业者是处于人工智能的数据处理方向,还是人工智能的算力设备研发方向,或者是人工智能的算法研发方向,都将会迎来巨大的行业红利和丰厚的回报。而人工智能算法方向又是学习回报比最高的一个方向,做为没有背景的个人,是进入人工智能行业的最佳选择 。
文/deep man
以上就是关于神经网络的三要素相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: