为什么要数据分析
大家好!今天让创意岭的小编来大家介绍下关于为什么要数据分析的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、大数据分析的目的是什么?
1、分析现状
分析现状是我们数据分析的基本目的,我们需要明确当前市场环境下,我们的产品市场占有率是多少,注册用户的来源有哪些,注册转化率是多少,购买转化率是多少,竞品是什么,竞品的发展现状如何。
我们和竞争对手相对,优势有哪些,不足又有哪些等等,都是属于对于现状的分析。这里包括两方面的内容,分析自己的现状和分析竞争对手的现状。
2、分析原因
分析原因是数据运营者用得比较多的了,做运营的人,在具体的业务中,不光要知道怎么了,还需要知道为什么如此。在业务上,我们经常会遇到某天用户突然很活跃,有时用户突然大量流失等,每一个变化都是有原因的,我们要做的就是找出这个原因,并给出解决办法,这些就是分析原因。
3、预测未来
数据分析的第三个目的就是预测未来,所谓未雨绸缪,用数据分析的方法预测未来产品的变化趋势,对于产品的运营者来说至关重要。
作为运营者,可根据最近一段时间产品的数据变化,根据趋势线和运营策略的力度,去预测未来的趋势,并用接下来的一段时间去验证这个趋势是否可行,而且实现数据驱动业务增长。
扩展资料:
大数据要分析的数据类型主要有四大类:
1、交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2、人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3、移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4、机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。
机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。
参考资料来源:百度百科—大数据
二、为什么要做APP数据分析?
①搭建数据运营分析框架
一个APP的构建与运营工作通常由多个角色分工实现,由于大家的工作重点不同,仅关注一个方面的数据就如同管中窥豹,无法全面了解产品运营情况,不能提出行之有效的分析建议。因此,只有搭建完善的数据运营分析框架,才能全面的衡量移动应用产品运营情况。除此之外,完整的数据运营分析框架还可以让产品经理和开发者不仅知道产品运营的基本状况和使用状况,更了解用户到底是谁,深入发现用户的需求。
②用数据推动产品迭代和市场推广
基础的数据运营分析框架对公司产品的整体发展状况会有一个很好的展现,但是创业者会关注更加细节的部分。
产品设计人员可以有针对性的对产品使用情况进行数据分析,了解用户对不同功能的使用,行为特征和使用反馈,这样可以为产品的改进提供很好的方向。
市场推广人员也不应该仅仅关注“什么渠道带来了多少用户”,更应该关注的是哪一个渠道带来的用户质量更高一些。
③产品盈利推手
盈利是公司的最终目的,无论一款产品是否已经探索出一个成熟的商业模式,创业者都应该借助数据让产品的盈利有一个更好进程。在产品商业的路上,数据可以帮助企业完成两件事:①发现产品盈利的关键路径;②优化现有的盈利模式。
三、数据分析有什么作用
数据分析师的在企业中的主要作用是支持与指导业务发展。基本合格的数据分析师支持业务发展,优秀的数据分析师指导业务发展。
数据分析师在不同类型、规模、发展阶段的企业中,发挥的作用不一样:
在企业发展初期,基本是没有数据分析师的。一个原因是数据量少,不用过多分析就能发现问题;另一个原因是互联网业务发展初期目标很明确,用户量是关键,无论用什么方法先把用户搞来,然后才有数据分析。
在企业发展中期,即业务上升阶段,这个时候需要大量的数据分析师,尤其是没有数据产品建设的企业。这时,数据产品和数据分析的工作基本是数据分析师承担的:定指标、做报表、可视化、分析和预测。
对数据产品建设的重视与否是影响企业发展速度和质量的重要因素。数据分析的最基础职责是帮助企业看清现状。看不清现状的企业是谈不上长远发展的。
企业发展壮大以后,数据分析团队搭建好了,基本上分工会更加明确一些。数据架构师、数据仓库工程师、数据产品经理、数据分析师、数据挖掘、算法工程师等共同构成稳健的数据团队。
四、为什么要学商业数据分析
第一作用:用数据说话
商业分析最大作用之一,用数据量化现状,用清晰消除模糊。比如卖货这件看似简单的事,如果没有数据,就只能笼统的说:感觉卖的还好。如果在交易系统对订单ID、商品名称、商品原价、商品实际交易价格、商品交易数量、参与优惠活动、付款用户ID进行了记录。就能很准确的知道:到底销售金额是多少,到底哪些用户来购买,到底商品卖了多少件。
除了直接记录,还能基于以上数据做二次加工,衍生出更多的有价值信息。
第二作用:用数据判断
商业分析最大作用之二,用数据替代感觉。所有的商业判断都离不开标准。可很多时候,企业里的标准是随意、随性、随缘来定的,甚至办事没有标准,大家凭感觉做。
用未经分析检验的标准指导商业经营,往往是灾难的起源。遇事拍脑袋,办事拍胸脯,出事拍大腿,完事拍屁股的人引发的问题,我们都见得太多、太多、太多了。孙子兵法有云:主不可以怒而兴师,将不可以愠而攻战。做好商业分析,是遏制自己的主观冲动,回归理性的有效办法。比如上述场景,其实对应了三大类判断标准,我们可以用分析方法来检验这些判断标准是否合理,是否有更好的标准可以用。
虽然很多时候,商业判断本身不一定是理性客观的产物,商业经营的成功也是激情、冲动、创意、甚至运气的结果。但经过分析,至少可以给一个客观的参考,这样才能让决策者在激情冲动之前,先有一个常识性的认知。毕竟置之死地而后生的人少,置之死地死像凄惨片甲无存的人多。
第三作用:用数据寻因
这是人们通常认知的商业分析的作用1。需要注意的是,商业分析探索问题原因,不是单纯依靠内部系统数据。比如销售发生问题,往往是通过内部数据锁定是什么时候,什么区域,什么门店,什么产品发生的问题,之后要换其他分析手段了。商品滞销,很有可能是因为门店管理混乱、核心销售流失、消费者不喜欢、竞品在打压,这些因素在内部是没有数据记录的。因此单纯对着图标很难得到结论,得通过市场走访、员工访谈、消费者调研,竞品对比,共同确认问题发生的真正原因。类似的,在营销活动、运营计划、生产供应等方面,都可以类似分析。
第四作用:用数据评估
这是人们通常认知的商业分析的作用*2。比如评估一个销售的能力,不能光看销售金额,还会考虑销售回款,毛利,顾客服务满意度,大客户数量,违规(抢客、不规范报单、拆单)等等等。当评估维度一多,就得做综合性评估。这时候可以用统计学方法,做专家评估或神经网络模型,压缩评估变量,得出综合分数,从而更好的判断销售能力。类似的,在产品、门店、供应商资质等方面,都可以类似评估。
第五作用:用数据预测
这是人们通常认知的商业分析的作用*3。比如预测销售情况,对业务部、市场部、供应链、售后都很需要。销售高峰,意味着供应链的供应、售后的服务都会成倍的增加工作量。销售低谷,市场部就得想办法做事情拉动销量,业务部得努力抓执行。预测销售利用统计学方法或机器学习方法都行,之后可以慢慢分享。需要注意的是,商业预测不同于农业、社会学、经济学预测,商业环境本来就是瞬息万变的。导致预测的根基更不牢靠,预测前提经常变化。因此商业预测更多是作为参照值,预测效果不如农业、社会学、经济学那么好。
以上就是关于为什么要数据分析相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: