HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    最优化kkt条件(kkt条件例题)

    发布时间:2023-03-31 20:41:24     稿源: 创意岭    阅读: 109        当前文章关键词排名出租

    大家好!今天让创意岭的小编来大家介绍下关于最优化kkt条件的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    最优化kkt条件(kkt条件例题)

    一、SVM(1) 之 拉格朗日乘子法和KKT条件

    拉格朗日乘法拉格朗日乘数法是用来求条件极值的,极值问题有两类,其一,求函数在给定区间上的极值,对自变量

    没有其它要求,这种极值称为无条件极值。其二,对自变量有一些附加的约束条件限制下的极值,称为

    条件极值。

    求这个椭球的内接长方体的最大体积。

    下,求

    通过拉格朗日乘数法将问题转化为

    然后分别对x,y,z,兰姆达 求导,得到最值,带回原式即可

    更多参考

    https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E4%B9%98%E6%95%B0

    https://blog.csdn.net/acdreamers/article/details/41413445

    《统计学习方法》 附录C

    假设 是定义在R^n上的连续可微函数,考虑约束最优化问题

    很多时候,现实问题可能跟上述结构不一样,那么把问题转化一下即可,比如 max->min

    其中, 是拉格朗日乘子,并且要求 。

    首先我们把 看成是 的函数(把x看成常量),然后求该函数的最大值(含x的表达式),接着再把x看成变量,因此可以定义函数 如下:

    下标 代表原始问题

    可以证明,如果 满足原始问题中约束,那么

    如果 不满足原始问题中的约束 ,那么 ,即:

    所以如果考虑极小化问题:

    称为广义勒格朗日函数的极小极大问题。此时原始最优化问题,转化为广义拉格朗日函数的极大极小问题。这样一来,就把原始最优化问题表示为广义拉格朗日函数的极小极大问题。我们定义原始问题最优解:

    我们再定义:

    并极大化 ,即:

    为广义拉格朗日函数的极大极小问题(上一节的是极小极大问题)。这样可以将广义拉格朗日函数的极大极小问题进一步表示为约束最优化问题:

    对比原始问题,对偶问题是先固定 ,求最优化 的解,在确定参数 ;

    原始问题是先固定x,求最优化 的解,再确定 。

    这块我就不证明了,书上都有。

    总之,当原始问题和对偶问题的最优值相等: 时,可以用求解对偶问题来求解原始问题(当然是对偶问题求解比直接求解原始问题简单的情况下),但是到底满足什么样的条件才能使 呢,这就是下面要阐述的 KKT 条件。

    作为对比,把拉格朗日函数再拿出来对比一下

    KKT条件 可以分为三部分来考虑:

    二、支持向量机(SVM)基本原理

    看了很多关于SVM的博客,但是常常只能保存书签之后看,有时候有的博客就突然没了,这里就作为搬运工总结一下之后自己看吧。主要内容来自于:

    支持向量机通俗导论(理解SVM的三层境界)

    线性回归

    给定数据集 , 其中, ,线性回归试图学习到一个线性模型,尽可能地输出正确标记.

    如果我们要用线性回归算法来解决一个分类问题,(对于分类,y 取值为 0 或者 1),但如果你使用的是线性回归,那么假设函数的输出值可能远大于 1,或者远小于 0,就算所有训练样本的标签 y 都是 0 或 1但是如果算法得到的值远大于 1 或者远小于 0 的话,就会感觉很奇怪。所以我们在接下来的要研究的算法就叫做逻辑回归算法,这个算法的性质是:它的输出值永远在 0 到 1 之间。

    所以逻辑回归就是一个分类算法,这个算法的输出值永远在 0 到 1 之间.

    我们先看二分类的LR,具体做法是:利用sigmoid 函数,将每一个点的回归值映射到0,1之间.sigmoid函数特性如下:

    如图所示,令 , 当 z > 0 , z 越大, sigmoid 返回值越接近1(但永远不会超过1). 反之,当z < 0时,z 越小, sigmoid 返回值越接近0(但永远不会小于0).

    支持向量机 ,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为 特征空间 上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

    线性分类器

    给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置):

    logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。

    假设函数:

    其中x是n维特征向量,函数g就是logistic函数。

    图像为:

    在超平面w x+b=0确定的情况下,|w x+b|能够表示点x到距离超平面的远近,而通过观察w x+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y (w*x+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。

    定义函数间隔 (用表示)为

    而超平面(w,b)关于T中所有样本点(xi,yi)的函数间隔最小值(其中,x是特征,y是结果标签,i表示第i个样本),便为超平面(w, b)关于训练数据集T的函数间隔:

    但这样定义的函数间隔有问题,即如果成比例的改变w和b(如将它们改成2w和2b),则函数间隔的值f(x)却变成了原来的2倍(虽然此时超平面没有改变),所以只有函数间隔还远远不够。

    事实上,我们可以对法向量w加些约束条件,从而引出真正定义点到超平面的距离--几何间隔(geometrical margin)的概念。

    假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量, 为样本x到超平面的距离,如下图所示:

    根据平面几何知识,有

    其中||w||为w的二阶范数(范数是一个类似于模的表示长度的概念), 是单位向量(一个向量除以它的模称之为单位向量)。

    又由于x0 是超平面上的点,满足 f(x0)=0,代入超平面的方程 ,可得 ,即

    随即让此式 的两边同时乘以 ,再根据 和 ,即可算出 :

    为了得到 的绝对值,令 乘上对应的类别 y,即可得出几何间隔(用 表示)的定义:

    从上述函数间隔和几何间隔的定义可以看出:几何间隔就是函数间隔除以||w||,而且函数间隔y (wx+b) = y f(x)实际上就是|f(x)|,只是人为定义的一个间隔度量,而几何间隔|f(x)|/||w||才是直观上的点到超平面的距离。

    对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。

    通过由前面的分析可知:函数间隔不适合用来最大化间隔值,因为在超平面固定以后,可以等比例地缩放w的长度和b的值,这样可以使得 的值任意大,亦即函数间隔 可以在超平面保持不变的情况下被取得任意大。但几何间隔因为除上了 ,使得在缩放w和b的时候几何间隔的值 是不会改变的,它只随着超平面的变动而变动,因此,这是更加合适的一个间隔。换言之,这里要找的最大间隔分类超平面中的“间隔”指的是几何间隔。

    于是最大间隔分类器(maximum margin classifier)的目标函数可以定义为

    同时需满足一些条件,根据间隔的定义,有

    回顾下几何间隔的定义 ,可知:如果令函数间隔 等于1(之所以令等于1,是为了方便推导和优化,且这样做对目标函数的优化没有影响),则有 = 1 / ||w||且 ,从而上述目标函数转化成了:

    相当于在相应的约束条件 下,最大化这个1/||w||值,而1/||w||便是几何间隔。

    据了解,

    由于这个问题的特殊结构,还可以通过拉格朗日对偶性(Lagrange Duality)变换到对偶变量 (dual variable) 的优化问题,即通过求解与原问题等价的对偶问题(dual problem)得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题。

    那什么是拉格朗日对偶性呢?简单来讲,通过给每一个约束条件加上一个拉格朗日乘子 ,(Lagrange multiplier),定义拉格朗日函数(通过拉格朗日函数将约束条件融合到目标函数里去,从而只用一个函数表达式便能清楚的表达出我们的问题)

    然后令:

    容易验证,当某个约束条件不满足时,例如 ,那么显然有 (只要令 即可)。而当所有约束条件都满足时,则最优值为 ,亦即最初要最小化的量。

    因此,在要求约束条件得到满足的情况下最小化 ,实际上等价于直接最小化 (当然,这里也有约束条件,就是 ≥0,i=1,…,n) ,因为如果约束条件没有得到满足, 会等于无穷大,自然不会是我们所要求的最小值。

    具体写出来,目标函数变成了:

    这里用 表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对w和b两个参数,而 又是不等式约束,这个求解过程不好做。不妨把最小和最大的位置交换一下,变成:

    交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用 来表示。而且有 ≤ ,在满足某些条件的情况下,这两者相等,这个时候就可以通过求解对偶问题来间接地求解原始问题。

    换言之,之所以从minmax 的原始问题,转化为maxmin 的对偶问题,一者因为 是 的近似解,二者,转化为对偶问题后,更容易求解。

    下面可以先求L 对w、b的极小,再求L对 的极大。

    KKT条件

    ≤ 在满足某些条件的情况下,两者等价,这所谓的“满足某些条件”就是要满足KKT条件。

    要让两者等价需满足strong duality (强对偶),而后有学者在强对偶下提出了KKT条件,且KKT条件的成立要满足constraint qualifications,而constraint qualifications之一就是Slater条件。所谓Slater 条件,即指:凸优化问题,如果存在一个点x,使得所有等式约束都成立,并且所有不等式约束都严格成立(即取严格不等号,而非等号),则满足Slater 条件。对于此处,Slater 条件成立,所以 ≤ 可以取等号。

    一般地,一个最优化数学模型能够表示成下列标准形式:

    其中,f(x)是需要最小化的函数,h(x)是等式约束,g(x)是不等式约束,p和q分别为等式约束和不等式约束的数量。

    KKT条件的意义:它是一个非线性规划(Nonlinear Programming)问题能有最优化解法的必要和充分条件。

    而KKT条件就是指上面最优化数学模型的标准形式中的最小点 x* 必须满足下面的条件:

    我们这里的问题是满足 KKT 条件的(首先已经满足Slater条件,再者f和gi也都是可微的,即L对w和b都可导),因此现在我们便转化为求解第二个问题。

    也就是说,原始问题通过满足KKT条件,已经转化成了对偶问题。而求解这个对偶学习问题,分为3个步骤:首先要让L(w,b,a) 关于 w 和 b 最小化,然后求对 的极大,最后利用SMO算法求解对偶问题中的拉格朗日乘子。

    对偶问题求解的3个步骤

    将以上结果代入之前的L:

    得到:

    具体推导过程是比较复杂的,如下所示:

    最后,得到:

    “倒数第4步”推导到“倒数第3步”使用了线性代数的转置运算,由于ai和yi都是实数,因此转置后与自身一样。“倒数第3步”推导到“倒数第2步”使用了(a+b+c+…)(a+b+c+…)=aa+ab+ac+ba+bb+bc+…的乘法运算法则。最后一步是上一步的顺序调整。

    从上面的最后一个式子,我们可以看出,此时的拉格朗日函数只包含了一个变量,那就是 (求出了 便能求出w,和b,由此可见,则核心问题:分类函数 也就可以轻而易举的求出来了)。

    上述式子要解决的是在参数上 求最大值W的问题,至于 和 都是已知数。要了解这个SMO算法是如何推导的,请跳到下文第3.5节、SMO算法。

    总结

    让我们再来看看上述推导过程中得到的一些有趣的形式。首先就是关于我们的 hyper plane ,对于一个数据点 x 进行分类,实际上是通过把 x 带入到 算出结果然后根据其正负号来进行类别划分的。而前面的推导中我们得到:

    因此分类函数为:

    这里的形式的有趣之处在于,对于新点 x的预测,只需要计算它与训练数据点的内积即可(表示向量内积),这一点至关重要,是之后使用 Kernel 进行非线性推广的基本前提。此外,所谓 Supporting Vector 也在这里显示出来——事实上,所有非Supporting Vector 所对应的系数 都是等于零的,因此对于新点的内积计算实际上只要针对少量的“支持向量”而不是所有的训练数据即可。

    为什么非支持向量对应的 等于零呢?直观上来理解的话,就是这些“后方”的点——正如我们之前分析过的一样,对超平面是没有影响的,由于分类完全有超平面决定,所以这些无关的点并不会参与分类问题的计算,因而也就不会产生任何影响了。

    回忆一下我们通过 Lagrange multiplier得到的目标函数:

    注意到如果 xi 是支持向量的话,上式中红颜色的部分是等于 0 的(因为支持向量的 functional margin 等于 1 ),而对于非支持向量来说,functional margin 会大于 1 ,因此红颜色部分是大于零的,而 又是非负的,为了满足最大化, 必须等于 0 。这也就是这些非Supporting Vector 的点的局限性。

    至此,我们便得到了一个maximum margin hyper plane classifier,这就是所谓的支持向量机(Support Vector Machine)。当然,到目前为止,我们的 SVM 还比较弱,只能处理线性的情况,不过,在得到了对偶dual 形式之后,通过 Kernel 推广到非线性的情况就变成了一件非常容易的事情了(通过求解对偶问题得到最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题”)。

    事实上,大部分时候数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在。在上文中,我们已经了解到了SVM处理线性可分的情况,那对于非线性的数据SVM咋处理呢?对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。

    具体来说,在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。如图所示,一堆数据在二维空间无法划分,从而映射到三维空间里划分:

    而在我们遇到核函数之前,如果用原始的方法,那么在用线性学习器学习一个非线性关系,需要选择一个非线性特征集,并且将数据写成新的表达形式,这等价于应用一个固定的非线性映射,将数据映射到特征空间,在特征空间中使用线性学习器,因此,考虑的假设集是这种类型的函数:

    这里ϕ:X->F是从输入空间到某个特征空间的映射,这意味着建立非线性学习器分为两步:

    首先使用一个非线性映射将数据变换到一个特征空间F,

    然后在特征空间使用线性学习器分类。

    而由于对偶形式就是线性学习器的一个重要性质,这意味着假设可以表达为训练点的线性组合,因此决策规则可以用测试点和训练点的内积来表示:

    如果有一种方式可以在特征空间中直接计算内积〈φ(xi · φ(x)〉,就像在原始输入点的函数中一样,就有可能将两个步骤融合到一起建立一个非线性的学习器,这样直接计算法的方法称为核函数方法:

    核是一个函数K,对所有x,z,满足 ,这里φ是从X到内积特征空间F的映射。

    来看个核函数的例子。如下图所示的两类数据,分别分布为两个圆圈的形状,这样的数据本身就是线性不可分的,此时咱们该如何把这两类数据分开呢(下文将会有一个相应的三维空间图)?

    事实上,上图所述的这个数据集,是用两个半径不同的圆圈加上了少量的噪音生成得到的,所以,一个理想的分界应该是一个“圆圈”而不是一条线(超平面)。如果用 和 来表示这个二维平面的两个坐标的话,我们知道一条二次曲线(圆圈是二次曲线的一种特殊情况)的方程可以写作这样的形式:

    注意上面的形式,如果我们构造另外一个五维的空间,其中五个坐标的值分别为 ,那么显然,上面的方程在新的坐标系下可以写作:

    关于新的坐标 ,这正是一个 hyper plane 的方程!也就是说,如果我们做一个映射 ,将 按照上面的规则映射为 ,那么在新的空间中原来的数据将变成线性可分的,从而使用之前我们推导的线性分类算法就可以进行处理了。这正是 Kernel 方法处理非线性问题的基本思想。

    再进一步描述 Kernel 的细节之前,不妨再来看看上述例子在映射过后的直观形态。当然,你我可能无法把 5 维空间画出来,不过由于我这里生成数据的时候用了特殊的情形,所以这里的超平面实际的方程是这个样子的(圆心在 轴上的一个正圆)

    因此我只需要把它映射到 ,这样一个三维空间中即可,下图即是映射之后的结果,将坐标轴经过适当的旋转,就可以很明显地看出,数据是可以通过一个平面来分开的

    核函数相当于把原来的分类函数:

    映射成:

    而其中的 可以通过求解如下 dual 问题而得到的:

    这样一来问题就解决了吗?似乎是的:拿到非线性数据,就找一个映射

    三、SVM与Neural Network

    囫囵吞枣看完SVM,个人感觉如果不好好理解一些概念,或说如果知其然而不知其所以然的话,不如不看。因此我想随便写一写,把整个思路简单地整理一遍。:)

    SVM与神经网络

    支持向量机并不是神经网络,这两个完全是两条不一样的路吧。不过详细来说,线性SVM的计算部分就像一个单层的神经网络一样,而非线性SVM就完全和神经网络不一样了(是的没错,现实生活中大多问题是非线性的),详情可以参考 知乎答案 。

    这两个冤家一直不争上下,最近基于神经网络的深度学习因为AlphaGo等热门时事,促使神经网络的热度达到了空前最高。毕竟,深度学习那样的多层隐含层的结构,犹如一个黑盒子,一个学习能力极强的潘多拉盒子。有人或许就觉得这就是我们真正的神经网络,我们不知道它那数以百千计的神经元干了什么,也不理解为何如此的结构能诞生如此美好的数据

    ——

    犹如复杂性科学般,处于高层的我们并不能知道底层的”愚群“为何能涌现。两者一比起来,SVM似乎也没有深度学习等那么令人狂热,连Hinton都开玩笑说SVM不过是浅度学习(来自深度学习的调侃)。

    不然,个人觉得相对于热衷于隐含层的神经网络,具有深厚的数学理论的SVM更值得让我们研究。SVM背后伟大的数学理论基础可以说是现今人类的伟大数学成就,因此SVM的解释性也非神经网络可比,可以说,它的数学理论让它充满了理性,这样的理性是一个理工科生向往的。就如,你渴望知道食物的来源以确定食物是否有毒,如果有毒是什么毒,这样的毒会在人体内发生了什么反应以致于让你不适

    —— 我的理性驱使我这么想,一个来路不明的食物是不能让我轻易接受的。

    SVM是什么

    简单点讲,SVM就是个分类器,它用于回归的时候称为SVR(Support Vector Regression),SVM和SVR本质上都一样。下图就是SVM分类:

    (边界上的点就是支持向量,这些点很关键,这也是”支持向量机“命名的由来)

    SVM的目的:寻找到一个超平面使样本分成两类,并且间隔最大。而我们求得的w就代表着我们需要寻找的超平面的系数。

    用数学语言描述:

    这就是SVM的基本型。

    SVM的基本型在运筹学里面属于二次规划问题,而且是凸二次规划问题(convex quadratic programming)。

    二次规划

    二次规划的问题主要用于求最优化的问题,从SVM的求解公式也很容易看出来,我们的确要求最优解。

    简介:

    在限制条件为

    的条件下,找一个n 维的向量 x ,使得

    为最小。

    其中,c为n 维的向量,Q为n × n 维的对称矩阵,A为m × n 维的矩阵,b为m 维的向量。

    其中,根据优化理论,如果要到达最优的话,就要符合KKT条件(Karush-Kuhn-Tucker)。

    KKT

    KKT是在满足一些有规则的条件下,一个非线性规则问题能有最优解的一个充分必要条件。也就是说,只要约束条件按照这个KKT给出的规则列出,然后符合KKT条件的,就可以有最优解。这是一个广义化拉格朗日乘数的成果。

    把所有的不等式约束、等式约束和目标函数全部写为一个式子

    L(a, b, x)= f(x) + a*g(x)+b*h(x)

    KKT条件是说最优值必须满足以下条件:

    L(a, b, x)对x求导为零

    h(x) = 0

    a*g(x) = 0

    对偶问题

    将一个原始问题转换为一个对偶问题,懂的人知道对偶问题不过是把原始问题换了一种问法,从另一角度来求问题的解,其本质上是一样的。就好像我不能证明我比百分之五的人丑,但是我能证明我比百分之九十五的人帅,那样就够了。那么,为啥要用对偶问题,直接求原始问题不好吗?参考一下 为什么我们要考虑线性规划的对偶问题?

    而二次规划的对偶问题也是二次规划,性质、解法和原来一样,所以请放心。(只做简要介绍

    最后训练完成时,大部分的训练样本都不需要保留,最终只会保留支持向量。这一点我们从图上也能看得出来,我们要确定的超平面只和支持向量有关不是吗?

    (你看,只和支持向量有关)

    然而,问题又出现了(新解法的出现总是因为新问题的出现),对于SVM的对偶问题,通过二次规划算法来求解的计算规模和训练样本成正比,开销太大。换句话来说,输入数据小的时候还好,不过小数据几乎没啥用,但是数据量大起来又计算量太大,所以就得寻找一种适合数据量大而且计算量小的解法,这个就是SMO。

    SMO

    SMO,Sequential Minimal Optimization,针对SVM对偶问题本身的特性研究出的算法,能有效地提高计算的效率。SMO的思想也很简单:固定欲求的参数之外的所有参数,然后求出欲求的参数。

    例如,以下是最终求得的分类函数,也就是我们SVM的目标:

    SMO算法每次迭代只选出两个分量ai和aj进行调整,其它分量则保持固定不变,在得到解ai和aj之后,再用ai和aj改进其它分量。

    如何高效也能通过SMO算法的思想看得出来 ——

    固定其他参数后,仅优化两个参数,比起之前优化多个参数的情况,确实高效了。然而,与通常的分解算法比较,它可能需要更多的迭代次数。不过每次迭代的计算量比较小,所以该算法表现出较好的快速收敛性,且不需要存储核矩阵,也没有矩阵运算。说白了,这样的问题用SMO算法更好。

    核函数

    我们的SVM目的其实也简单,就是找一个超平面,引用一张图即可表述这个目的:

    然而现实任务中,原始样本空间也许并不能存在一个能正确划分出两类样本的超平面,而且这是很经常的事。你说说要是遇到这样的数据,怎么划分好呢:

    告诉我你的曲线方程吧,傻了吧~

    于是引入了一个新的概念:核函数。它可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在这个新的高维空间中可以被线性划分为两类,即在空间内 线性划分 。这个过程可以观看 视频 感受感受,由于是youtube所以我截一下图:

    这是原始数据和原始空间,明显有红蓝两类:

    通过核函数,将样本数据映射到更高维的空间(在这里,是二维映射到三维):

    而后进行切割:

    再将分割的超平面映射回去:

    大功告成,这些就是核函数的目的。

    再进一步,核函数的选择变成了支持向量机的最大变数(如果必须得用上核函数,即核化),因此选用什么样的核函数会影响最后的结果。而最常用的核函数有:线性核、多项式核、高斯核、拉普拉斯核、sigmoid核、通过核函数之间的线性组合或直积等运算得出的新核函数。(这里只涉及概念,不涉及数学原理)

    软间隔

    知道了上面的知识后,你不是就觉得SVM分类就应该是这样的:

    然而这也不一定是这样的,上图给出的是一种完美的情况,多么恰巧地两类分地很开,多么幸运地能有一个超平面能将两个类区分开来!要是这两个类有一部分掺在一起了,那又该怎么分啊:

    有时候如果你非要很明确地分类,那么结果就会像右边的一样 ——

    过拟合。明显左边的两个都比过拟合好多了,可是这样就要求允许一些样本不在正确的类上,而且这样的样本越少越好,”站错队“的样本数量要通过实际来权衡。这就得用上”软间隔“,有软间隔必然有硬间隔,应间隔就是最开始的支持向量机,硬间隔支持向量机只能如此”明确“地分类。特意找来了这个数学解释:

    其中一个样本要是”站错队“就要有损失,我们的目的就是:找出总损失值最小并且能大概分类的超平面。而计算一个样本的损失的损失函数也有很多种,例如:hinge损失、指数损失、対率损失等。

    只是简单地把思路整理了一遍而已。

    四、XGBoost与GBDT(一)-几种最优化方法对比

    发现了作者的一个ppt GBDT算法原理与系统设计简介 ,从头复习了一波相关的内容,写两篇记录下来.

    从根本上来说, GBDT 与XGBoost最大的区别在于二者用的优化方法不一样,所以从先从最优化方法开始复习.

    最优化问题通常分为两个大类:

    在机器学习中,典型的做法就是选择一个合适的模型 ,对该模型的损失函数 ,通过最优化的方法最小化损失函数,从而求解模型的参数.

    最常见的几种优化方法包括[2]:

    可以看出,虽然牛顿法收敛速度较快,但是每次迭代过程,计算海塞矩阵的逆过程相当繁琐,特别是当该矩阵维度较大时.因此就有了逆牛顿法,他使用正定矩阵来近似求海塞矩阵的逆.

    拟牛顿法和梯度下降法一样只要求每一步迭代时知道目标函数的梯度,另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。常用的拟牛顿法有DFP算法和BFGS算法.此处不再赘述.

    下面补充拟牛顿法的思路(摘自[3]):

    共轭梯度法是一种用于解决无约束凸二次规划问题的方法.

    启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

    上面前三种算法,解决的问题都仅限于无约束的凸优化, 而拉格朗日乘数法则解决含有约束条件的优化问题,例如svm算法的解法推导.约束优化问题的一般形式是:

    这个问题可以转化成函数 的无条件极值问题.

    对于约束条件为不等式的问题,有科学家拓展了拉格朗日乘数法.增加了kkt条件以求解.没学过最优化,这块就没法细谈了.有机会一定要补上.

    [1]Poll的笔记.常见的几种最优化方法[EB/OL]. https://www.cnblogs.com/maybe2030/p/4751804.html,2015-08-23 .

    [2]超神冉.最优化算法——常见优化算法分类及总结[EB/OL]. https://blog.csdn.net/qq997843911/article/details/83445318,2018-10-27 .

    [3]李航.统计学习方法[M].清华大学出版社:北京,2012:220.

    [4]Ja1r0.共轭梯度法[EB/OL]. https://zhuanlan.zhihu.com/p/28623599,2018-05-28 .

    以上就是关于最优化kkt条件相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    怎样预定酒店(怎样预订酒店最优惠)

    最优化kkt条件(kkt条件例题)

    最优化建模算法与理论(最优化建模算法与理论答案)

    SQL Error: select * from ***_ecms_news order by rand() desc limit 2