HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    二分类算法(二分类算法什么意思)

    发布时间:2023-04-13 17:29:29     稿源: 创意岭    阅读: 115        

    大家好!今天让创意岭的小编来大家介绍下关于二分类算法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    二分类算法(二分类算法什么意思)

    一、数据与bh等价是什么关系

    数据与BH等价是指,对于一个给定的问题或任务,在某个数据集上表现最好的算法(Best Hypothesis,简称BH)所得到的结果和在该数据集上表现最好的所有算法中平均性能相当时所需使用的样本量。

    具体来说,假设我们有一个二分类问题,并且有多个不同算法可以用于解决这个问题。我们将每种算法应用于同一组训练数据,并记录它们在测试集上的性能。然后,我们找出在测试集上表现最好的那个算法作为BH。接着,我们计算其他所有算法与BH之间差距(即误差),并确定需要多少额外样本才能使这些其他算法达到与BH相当的性能水平。

    因此,数据与BH等价关系意味着:如果我们想要比较两种不同方法或模型在某项任务中哪种更优秀,则需要确保使用足够数量、质量和代表性良好的训练和测试数据;同时还需要考虑选择合适评估指标以及如何处理可能存在过拟合、欠拟合等情况。只有满足了这些条件才能进行有效而可靠地比较分析。

    二、(二):GBDT算法梳理

    GBDT(Gradient Boosting Decision Tree)是一种采用加法模型(即基函数的线性组合)与前向分步算法并以决策树作为基函数的提升方法。通俗来说就是,该算法由多棵决策树组成,所有树的结论加起来形成最终答案。

    GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

    在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是ft−1(x), 损失函数是L(y,ft−1(x)), 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器ht(x),让本轮的损失函数L(y,ft(x)=L(y,ft−1(x)+ht(x))最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。

    要理解GBDT算法,得先来了解一下什么是前向分步算法。下面一起来瞧瞧。

    我们将

    作为加法模型,其中b(x;γm)为基函数,γm为基函数的参数,βm为基函数的系数,βm表示着对应的基函数在加法模型f(x)中的重要性。

    在给定训练数据和损失函数L(y,f(x))的条件下,学习加法模型成为经验风险极小化 (即损失函数极小化问题) :

    前向分步算法求解这一优化问题的思路: 因为学习的是加法模型,如果能够从前向后,每一步只学习一个基函数及其系数,逐步去逼近上述的目标函数式,就可简化优化的复杂度,每一步只需优化如下损失函数:

    前向分步算法流程:

    因此,前向分布算法将同时求解从m=1到M的所有参数βm, rm的优化问题简化为逐次求解各个βm, rm的优化问题。

    提升树利用加法模型与前向分步算法实现学习的优化过程,当损失函数是平方损失和指数损失函数时,每一步优化很简单,但对一般损失函数而言,每一步的优化并不容易。Freidman提出了 梯度提升算法 (gradient boosting),其关键是利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值,拟合一个回归树(用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树)。第t轮的第i个样本的损失函数的负梯度表示为:

    . 其中 J 为叶子节点的个数。

    针对每一个叶子节点里的样本,我们求出使损失函数最小,也就是拟合叶子节点最好的的输出值Ctj

    如下:

    这样我们就得到了本轮的决策树拟合函数如下:

    从而本轮最终得到的强学习器的表达式如下:

    通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用 GBDT 来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。

    在GBDT算法中,损失函数的选择十分重要。针对不同的问题,损失函数有不同的选择。

    1.对于分类算法,其损失函数一般由对数损失函数和指数损失函数两种。

    (1)指数损失函数表达式:

    (2)对数损失函数可分为二分类和多分类两种。

    2.对于回归算法,常用损失函数有如下4种。

    (1)平方损失函数

    (2)绝对损失函数

    对应负梯度误差为:

    (3)Huber损失 ,它是均方差和绝对损失的折中产物,对于远离中心的异常点,采用绝对损失误差,而对于靠近中心的点则采用平方损失。这个界限一般用分位数点度量。损失函数如下:

    对应的负梯度误差为:

    (4)分位数损失。 它对应的是分位数回归的损失函数,表达式为:

    其中 θ为分位数,需要我们在回归之前指定。对应的负梯度误差为:

    对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

    这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

    为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

    和 Adaboost 一样,我们也需要对 GBDT 进行正则化,防止过拟合。GBDT 的正则化主要有三种方式。

    在scikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同。这些参数中,类似于Adaboost,我们把重要参数分为两类,第一类是Boosting框架的重要参数,第二类是弱学习器即CART回归树的重要参数。

    下面我们就从这两个方面来介绍这些参数的使用。

    这次基本上是个CRUD boy,对于这些资料都大部分没有消化完成,还不知道能用在哪个地方。

    参考资料:

    3、GBDT算法梳理 https://juejin.im/post/5c7b7bf451882530a269a1ba

    三、大数据算法:分类算法

    KNN算法,即K近邻(K Nearest Neighbour)算法,是一种基本的分类算法。其主要原理是:对于一个需要分类的数据,将其和一组已经分类标注好的样本集合进行比较,得到距离最近的K个样本,K个样本最多归属的类别,就是这个需要分类数据的类别。下面我给你画了一个KNN算法的原理图。

    图中,红蓝绿三种颜色的点为样本数据,分属三种类别 、 、 。对于待分类点 ,计算和它距离最近的5个点(即K为5),这5个点最多归属的类别为 (4个点归属 ,1个点归属 ),那么 的类别被分类为 。

    KNN的算法流程也非常简单,请看下面的流程图。

    KNN算法是一种非常简单实用的分类算法,可用于各种分类的场景,比如新闻分类、商品分类等,甚至可用于简单的文字识别。对于新闻分类,可以提前对若干新闻进行人工标注,标好新闻类别,计算好特征向量。对于一篇未分类的新闻,计算其特征向量后,跟所有已标注新闻进行距离计算,然后进一步利用KNN算法进行自动分类。

    读到这你肯定会问,如何计算数据的距离呢?如何获得新闻的特征向量呢?

    KNN算法的关键是要比较需要分类的数据与样本数据之间的距离,这在机器学习中通常的做法是:提取数据的特征值,根据特征值组成一个n维实数向量空间(这个空间也被称作特征空间),然后计算向量之间的空间距离。空间之间的距离计算方法有很多种,常用的有欧氏距离、余弦距离等。

    对于数据 和 ,若其特征空间为n维实数向量空间 ,即 , ,则其欧氏距离计算公式为

    这个欧式距离公式其实我们在初中的时候就学过,平面几何和立体几何里两个点之间的距离,也是用这个公式计算出来的,只是平面几何(二维几何)里的n=2,立体几何(三维几何)里的n=3,而机器学习需要面对的每个数据都可能有n维的维度,即每个数据有n个特征值。但是不管特征值n是多少,两个数据之间的空间距离的计算公式还是这个欧氏计算公式。大多数机器学习算法都需要计算数据之间的距离,因此掌握数据的距离计算公式是掌握机器学习算法的基础。

    欧氏距离是最常用的数据计算公式,但是在文本数据以及用户评价数据的机器学习中,更常用的距离计算方法是余弦相似度。

    余弦相似度的值越接近1表示其越相似,越接近0表示其差异越大,使用余弦相似度可以消除数据的某些冗余信息,某些情况下更贴近数据的本质。我举个简单的例子,比如两篇文章的特征值都是:“大数据”“机器学习”和“极客时间”,A文章的特征向量为(3, 3, 3),即这三个词出现次数都是3;B文章的特征向量为(6, 6, 6),即这三个词出现次数都是6。如果光看特征向量,这两个向量差别很大,如果用欧氏距离计算确实也很大,但是这两篇文章其实非常相似,只是篇幅不同而已,它们的余弦相似度为1,表示非常相似。

    余弦相似度其实是计算向量的夹角,而欧氏距离公式是计算空间距离。余弦相似度更关注数据的相似性,比如两个用户给两件商品的打分分别是(3, 3)和(4, 4),那么两个用户对两件商品的喜好是相似的,这种情况下,余弦相似度比欧氏距离更合理。

    我们知道了机器学习的算法需要计算距离,而计算距离需要还知道数据的特征向量,因此提取数据的特征向量是机器学习工程师们的重要工作,有时候甚至是最重要的工作。不同的数据以及不同的应用场景需要提取不同的特征值,我们以比较常见的文本数据为例,看看如何提取文本特征向量。

    文本数据的特征值就是提取文本关键词,TF-IDF算法是比较常用且直观的一种文本关键词提取算法。这种算法是由TF和IDF两部分构成。

    TF是词频(Term Frequency),表示某个单词在文档中出现的频率,一个单词在一个文档中出现的越频繁,TF值越高。

    词频:

    IDF是逆文档频率(Inverse Document Frequency),表示这个单词在所有文档中的稀缺程度,越少文档出现这个词,IDF值越高。

    逆文档频率:

    TF与IDF的乘积就是TF-IDF。

    所以如果一个词在某一个文档中频繁出现,但在所有文档中却很少出现,那么这个词很可能就是这个文档的关键词。比如一篇关于原子能的技术文章,“核裂变”“放射性”“半衰期”等词汇会在这篇文档中频繁出现,即TF很高;但是在所有文档中出现的频率却比较低,即IDF也比较高。因此这几个词的TF-IDF值就会很高,就可能是这篇文档的关键词。如果这是一篇关于中国原子能的文章,也许“中国”这个词也会频繁出现,即TF也很高,但是“中国”也在很多文档中出现,那么IDF就会比较低,最后“中国”这个词的TF-IDF就很低,不会成为这个文档的关键词。

    提取出关键词以后,就可以利用关键词的词频构造特征向量,比如上面例子关于原子能的文章,“核裂变”“放射性”“半衰期”这三个词是特征值,分别出现次数为12、9、4。那么这篇文章的特征向量就是(12, 9, 4),再利用前面提到的空间距离计算公式计算与其他文档的距离,结合KNN算法就可以实现文档的自动分类。

    贝叶斯公式是一种基于条件概率的分类算法,如果我们已经知道A和B的发生概率,并且知道了B发生情况下A发生的概率,可以用贝叶斯公式计算A发生的情况下B发生的概率。事实上,我们可以根据A的情况,即输入数据,判断B的概率,即B的可能性,进而进行分类。

    举个例子:假设一所学校里男生占60%,女生占40%。男生总是穿长裤,女生则一半穿长裤一半穿裙子。假设你走在校园中,迎面走来一个穿长裤的学生,你能够推断出这个穿长裤学生是男生的概率是多少吗?

    答案是75%,具体算法是:

    这个算法就利用了贝叶斯公式,贝叶斯公式的写法是:

    意思是A发生的条件下B发生的概率,等于B发生的条件下A发生的概率,乘以B发生的概率,除以A发生的概率。还是上面这个例子,如果我问你迎面走来穿裙子的学生是女生的概率是多少。同样带入贝叶斯公式,可以计算出是女生的概率为100%。其实这个结果我们根据常识也能推断出来,但是很多时候,常识受各种因素的干扰,会出现偏差。比如有人看到一篇博士生给初中学历老板打工的新闻,就感叹读书无用。事实上,只是少见多怪,样本量太少而已。而大量数据的统计规律则能准确反映事物的分类概率。

    贝叶斯分类的一个典型的应用场合是垃圾邮件分类,通过对样本邮件的统计,我们知道每个词在邮件中出现的概率 ,我们也知道正常邮件概率 和垃圾邮件的概率 ,还可以统计出垃圾邮件中各个词的出现概率 ,那么现在一封新邮件到来,我们就可以根据邮件中出现的词,计算 ,即得到这些词出现情况下,邮件为垃圾邮件的概率,进而判断邮件是否为垃圾邮件。

    现实中,贝叶斯公式等号右边的概率,我们可以通过对大数据的统计获得,当有新的数据到来的时候,我们就可以带入上面的贝叶斯公式计算其概率。而如果我们设定概率超过某个值就认为其会发生,那么我们就对这个数据进行了分类和预测,具体过程如下图所示。

    训练样本就是我们的原始数据,有时候原始数据并不包含我们想要计算的维度数据,比如我们想用贝叶斯公式自动分类垃圾邮件,那么首先要对原始邮件进行标注,需要标注哪些邮件是正常邮件、哪些邮件是垃圾邮件。这一类需要对数据进行标注才能进行的机器学习训练也叫作有监督的机器学习。

    四、降维算法二:LDA(Linear Discriminant Analysis)

    学习分类算法,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了。

    谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导、求解、到算法最终的结果,都有着相当的相似。

    本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义。本次内容要求读者有一些基本的线性代数基础,比如说特征值、特征向量的概念,空间投影,点乘等的一些基本知识等。除此之外的其他公式、我都尽量讲得更简单清楚。

    LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种 supervised learning 。有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在 目前机器学习、数据挖掘领域经典且热门的一个算法 ,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

    LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器( Linear Classifier ):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:

    上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:

    红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:

    假设用来区分二分类的直线(投影函数)为:

    LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值。

    类别i的原始中心点为:(Di表示属于类别i的点)

    类别i投影后的中心点为:

    衡量类别i投影后,类别点之间的分散程度(方差)为:

    最终我们可以得到一个下面的公式,表示LDA投影到w后的损失函数:

    分类的目标是, 使得类别内的点距离越近越好(集中),类别间的点越远越好。 分母表示每一个类别内的方差之和,方差越大表示一个类别内的点越分散,分子为两个类别各自的中心点的距离的平方,我们最大化J(w)就可以求出最优的w了。想要求出最优的w,可以使用拉格朗日乘子法,但是现在我们得到的J(w)里面,w是不能被单独提出来的,我们就得想办法将w单独提出来。

    我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里面的点距离这个分类的中心店mi越近,则Si里面元素的值就越小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更接近0.

    同样的将J(w)分子化为:

    我们希望 分母越小越好,分子越大越好

    分母小,则每个类内部数据点比较聚集;

    分子大,则两个类别的距离较远。

    所以需要找出一个 W 使 J(W) 的值最大。

    这样就可以用最喜欢的拉格朗日乘子法了,但是还有一个问题,如果分子、分母是都可以取任意值的,那就会使得有无穷解,我们将分母限制为长度为1(这是用拉格朗日乘子法一个很重要的技巧,在下面将说的PCA里面也会用到,如果忘记了,请复习一下高数),并作为拉格朗日乘子法的限制条件,带入得到:

    这样的式子就是一个求特征值的问题了。

    对于N(N>2)分类的问题,我就直接写出下面的结论了:

    二者都有降维的作用。

    以上就是关于二分类算法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    山东城乡规划院二分院(山东城乡规划院二分院招聘)

    杭州公交公司第二分公司电话(杭州公交公司第二分公司电话是多少)

    二分类算法(二分类算法什么意思)

    场地识别感雕塑景观设计(场景识别与定位)

    百年不遇奇特景观设计(百年不遇的)